Part Number Hot Search : 
CY7C15 LTC2876 MJ10012T 11401 LD8052AH GBS4B HC157 BZV55B27
Product Description
Full Text Search
 

To Download SPW-VZHG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  05/01/2018 v1.0 1 features: > super high brightness surface mount led automotive exterior applications. > 120 viewing angle. > compact package outline (lxw) of 2.5 x 2.0mm. > ultra low height profile - 0.7mm. > low thermal resistance. > superior corrosion robustness. > compatible to ir reflow soldering. > compliance to automotive standard; aec-q101. > environmental friendly; rohs compliance. spiceplus like spice, its diminutive size is a stark contrast to its standout performance in terms of brightness, durability and reliability. despite being the smallest in size yet the spiceplus packs a powerful performance and is a highly reliable design device. data sheet : spiceplus2520 ingan white : SPW-VZHG ? 2005 spiceled is a trademark of dominant opto technologies. all rights reserved. product specifcations are subject to change without notice. applications: > automotive: exterior application: eg: daytime running light (drl), position lamp, fog lamp, backup lamp. dominant opto technologies innovating illumination tm
05/01/2018 v1.0 2 SPW-VZHG-su2-vnbn white 120 part ordering number color viewing angle? luminous flux @ 200ma (lm) appx. 1.2 unit absolute maximum ratings maximum value dc forward current peak pulse current; (tp 10s, duty cycle = 0.1) reverse voltage; ir max = 10a esd threshold (hbm) led junction temperature operating temperature storage temperature thermal resistance - real thermal resistance junction / solder point, r th js real (typ = 18) - electrical thermal resistance junction / solder point, r th js el (typ = 13) (mounting on dominant standard pcb) 300 600 not designed for reverse bias 8 150 -40 +125 -40 +125 20 14 ma ma v kv ?c ?c ?c k/w k/w typ. (v) vf @ if = 200ma appx. 3.1 electrical characteristics at tj=25?c max. (v) part number SPW-VZHG 3.3 3.8 min. (v) 3.0 electrical characteristics at tj=25?c 51.7 min. typ. max. 65.0 99.4 SPW-VZHG dominant opto technologies innovating illumination tm
electrical characteristics at tj=25?c 05/01/2018 v1.0 3 color grouping appx. 2.1 color bin structure ingan wavelength is very sensitive to drive current. operating at lower current is not recommended and may yield unpredictable performance current pulsing should be used for dimming purposed. bin ellipse y a b bn zn xn vn 5 step 5 step 5 step 5 step 0.3298 0.3246 0.3202 0.3162 0.3499 0.3398 0.3300 0.3207 0.0085 0.0085 0.0085 0.0085 0.00463 0.00463 0.00463 0.00463 75.57 75.57 75.57 75.57 x spiceplus 2520 ellipse x y a b ? 5?step 0.3298 0.3499 0.0085 0.00463 75.57 5?step 0.3246 0.3398 0.0085 0.00463 75.57 5?step 0.3202 0.3300 0.0085 0.00463 75.57 5?step 0.3162 0.3207 0.0085 0.00463 75.57 bn zn xn vn 0.300 0.310 0.320 0.330 0.340 0.350 0.360 0.370 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 SPW-VZHG dominant opto technologies innovating illumination tm
forward voltage (v) appx. 3.1 vf bining (optional) vf bin @ 200 ma vh9 vj1 vj2 vj3 3.00 ... 3.20 3.20 ... 3.40 3.40 ... 3.60 3.60 ... 3.80 05/01/2018 v1.0 4 s2 s3 t2 t3 u2 51.7 ... 59.0 59.0 ... 67.2 67.2 ... 76.5 76.5 ... 87.4 87.4 ... 99.4 brightness group luminous flux appx. 1.2 (lm) luminous intensity group at tj=25?c please consult sales and marketing for special part number to incorporate vf bining. SPW-VZHG dominant opto technologies innovating illumination tm
05/01/2018 v1.0 5 forward current i f (ma) forward current i f (ma) relative luminous flux rel forward current i f (ma) relative spectral emission rel = f(); t j = 25c; i f = 200ma relative luminous flux rel wavelength (nm) forward voltage v f (v) temperature t(c) maximum current vs temperature i f =f(t) SPW-VZHG dominant opto technologies innovating illumination tm forward current i f (ma) chromaticity coordinate shift vs forward current ?cx, ?cy = f(i f );t j = 25c ?cx, ?cy allowable forward current vs duty ratio ( t j = 25c; t p 10s ) duty ratio, % allowable forward current i f ( ma ) relative luminous flux vs forward current v / v ( 200ma) = f(i f ); t j = 25c forward current vs forward voltage i f = f(v f ); t j = 25c 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 50 100 150 200 250 300 0 50 100 150 200 250 300 2.5 2.7 2.9 3.1 3.3 3.5 3.7 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 t s t s ? = ? solder ? point ? temperature -0.100 -0.080 -0.060 -0.040 -0.020 0.000 0.020 0.040 0.060 0.080 0.100 0 50 100 150 200 250 300 ? cx, ? cy chromaticity coordinate shift vs forward current ? cx, ? cy = f(i f );t j = 25c forward current i f (ma) allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 10000 0.1 1 10 100 relative lumionous flux vs forward current v / v (200ma) = f(i f ); t j = 25c relative luminous flux rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 200ma ? cx ? cy 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 50 100 150 200 250 300 0 50 100 150 200 250 300 2.5 2.7 2.9 3.1 3.3 3.5 3.7 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 t s t s ? = ? solder ? point ? temperature -0.100 -0.080 -0.060 -0.040 -0.020 0.000 0.020 0.040 0.060 0.080 0.100 0 50 100 150 200 250 300 ? cx, ? cy chromaticity coordinate shift vs forward current ? cx, ? cy = f(i f );t j = 25c forward current i f (ma) allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 10000 0.1 1 10 100 relative lumionous flux vs forward current v / v (200ma) = f(i f ); t j = 25c relative luminous flux rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 200ma ? cx ? cy 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 50 100 150 200 250 300 0 50 100 150 200 250 300 2.5 2.7 2.9 3.1 3.3 3.5 3.7 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 t s t s ? = ? solder ? point ? temperature -0.100 -0.080 -0.060 -0.040 -0.020 0.000 0.020 0.040 0.060 0.080 0.100 0 50 100 150 200 250 300 ? cx, ? cy chromaticity coordinate shift vs forward current ? cx, ? cy = f(i f );t j = 25c forward current i f (ma) allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 10000 0.1 1 10 100 relative lumionous flux vs forward current v / v (200ma) = f(i f ); t j = 25c relative luminous flux rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 200ma ? cx ? cy 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 50 100 150 200 250 300 0 50 100 150 200 250 300 2.5 2.7 2.9 3.1 3.3 3.5 3.7 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 t s t s ? = ? solder ? point ? temperature -0.100 -0.080 -0.060 -0.040 -0.020 0.000 0.020 0.040 0.060 0.080 0.100 0 50 100 150 200 250 300 ? cx, ? cy chromaticity coordinate shift vs forward current ? cx, ? cy = f(i f );t j = 25c forward current i f (ma) allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 10000 0.1 1 10 100 relative lumionous flux vs forward current v / v (200ma) = f(i f ); t j = 25c relative luminous flux rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 200ma ? cx ? cy 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 50 100 150 200 250 300 0 50 100 150 200 250 300 2.5 2.7 2.9 3.1 3.3 3.5 3.7 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 t s t s ? = ? solder ? point ? temperature -0.100 -0.080 -0.060 -0.040 -0.020 0.000 0.020 0.040 0.060 0.080 0.100 0 50 100 150 200 250 300 ? cx, ? cy chromaticity coordinate shift vs forward current ? cx, ? cy = f(i f );t j = 25c forward current i f (ma) allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 10000 0.1 1 10 100 relative lumionous flux vs forward current v / v (200ma) = f(i f ); t j = 25c relative luminous flux rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 200ma ? cx ? cy 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 50 100 150 200 250 300 0 50 100 150 200 250 300 2.5 2.7 2.9 3.1 3.3 3.5 3.7 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 800 850 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) temperature t(c) 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 t s t s ? = ? solder ? point ? temperature -0.100 -0.080 -0.060 -0.040 -0.020 0.000 0.020 0.040 0.060 0.080 0.100 0 50 100 150 200 250 300 ? cx, ? cy chromaticity coordinate shift vs forward current ? cx, ? cy = f(i f );t j = 25c forward current i f (ma) allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 10000 0.1 1 10 100 relative lumionous flux vs forward current v / v (200ma) = f(i f ); t j = 25c relative luminous flux rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 200ma ? cx ? cy
05/01/2018 v1.0 6 radiation pattern relative forward voltage ?v f (v) junction temperature t j (c) relative luminious flux rel relative luminious flux vs junction temperature v/v(25c) = f(t j ); i f = 200ma junction temperature t j (c) ?cx , ?cy 08/12/2016 v7.0 9 ingan warm white: ddf-ljg dominant opto technologies innovating illumination tm radiation pattern junction temperature t j (c) relative forward voltage ?v f (v) junction temperature t j (c) relative luminous intensity i rel relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i f = 20ma junction temperature t j (c) ?cx , ?cy chromaticity coordinate shift vs junction temperature ?cx, ?cy = f(t j ); i f = 20ma 0. 2 70 90 80 0 60 50 40 30 20 0. 6 0. 4 1. 0 0. 8 10 0 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -30 -10 10 30 50 70 90 110 130 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -30 -10 10 30 50 70 90 110 130 relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i v = 20ma relative luminous intensity i rel -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -30 -10 10 30 50 70 90 110 130 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -30 -10 10 30 50 70 90 110 130 relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i v = 20ma relative luminous intensity i rel relative forward voltage vs junction temperature ?v f = v f - v f (25c) = f(t j ); i f =20ma -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 -50 -30 -10 10 30 50 70 90 110 130 ? cx ? cy -0.030 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 -50 -30 -10 10 30 50 70 90 110 130 relative wavelength ? dom (nm) relative wavelength vs junction temperature ? dom = dom - dom (25c) = f(t j ); i f = 20ma ? cx, ? cy chromaticity coordinate shift vs junction temperature ? cx, ? cy = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) junction temperature t j (c) chromaticity coordinate shift vs junction temperature ?cx, ?cy = f(t j ); i f = 200ma relative forward voltage vs junction temperature ?v f = v f - v f (25c) = f(t j ); i f = 200ma SPW-VZHG dominant opto technologies innovating illumination tm 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0 30 60 90 120 150 180 210 240 270 300 relative wavelength rel (nm) relative wavelength shift vs forward current dom = f(i f ); t j = 25c forward current i f (ma) -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -30 -10 10 30 50 70 90 110 130 150 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -30 -10 10 30 50 70 90 110 130 150 relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 200ma junction temperature t j (c) junction temperature t j (c) -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 -50 -30 -10 10 30 50 70 90 110 130 150 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 -50 -30 -10 10 30 50 70 90 110 130 150 relative wavelength ? dom (nm) relative wavelength vs junction temperature ? dom = dom - dom (25c) = f(t j ); i f = 50ma ? cx, ? cy chromaticity coordinate shift vs junction temperature ? cx, ? cy = f(t j ); i f = 200ma junction temperature t j (c) junction temperature t j (c) relative luminious flux vs junction temperature v / v (25c) = f(t j ); i f = 200ma relative luminious flux rel ? cx ? cy items ? to ? check: 1. ? rated ? current ? in ? each ? graph ? title 2. ? relative ? value=1 ? @ ? rated ? current 3. ? typ ? vf ? @ ? rated ? current 4. ? relative ? value=1 ? @ ? 25c ? degree 5. ? max ? value ? in ? each ? graph 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0 30 60 90 120 150 180 210 240 270 300 relative wavelength rel (nm) relative wavelength shift vs forward current dom = f(i f ); t j = 25c forward current i f (ma) -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -30 -10 10 30 50 70 90 110 130 150 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -30 -10 10 30 50 70 90 110 130 150 relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 200ma junction temperature t j (c) junction temperature t j (c) -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 -50 -30 -10 10 30 50 70 90 110 130 150 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 -50 -30 -10 10 30 50 70 90 110 130 150 relative wavelength ? dom (nm) relative wavelength vs junction temperature ? dom = dom - dom (25c) = f(t j ); i f = 50ma ? cx, ? cy chromaticity coordinate shift vs junction temperature ? cx, ? cy = f(t j ); i f = 200ma junction temperature t j (c) junction temperature t j (c) relative luminious flux vs junction temperature v / v (25c) = f(t j ); i f = 200ma relative luminious flux rel ? cx ? cy items ? to ? check: 1. ? rated ? current ? in ? each ? graph ? title 2. ? relative ? value=1 ? @ ? rated ? current 3. ? typ ? vf ? @ ? rated ? current 4. ? relative ? value=1 ? @ ? 25c ? degree 5. ? max ? value ? in ? each ? graph 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0 30 60 90 120 150 180 210 240 270 300 relative wavelength rel (nm) relative wavelength shift vs forward current dom = f(i f ); t j = 25c forward current i f (ma) -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -30 -10 10 30 50 70 90 110 130 150 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -30 -10 10 30 50 70 90 110 130 150 relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 200ma junction temperature t j (c) junction temperature t j (c) -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 -50 -30 -10 10 30 50 70 90 110 130 150 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 -50 -30 -10 10 30 50 70 90 110 130 150 relative wavelength ? dom (nm) relative wavelength vs junction temperature ? dom = dom - dom (25c) = f(t j ); i f = 50ma ? cx, ? cy chromaticity coordinate shift vs junction temperature ? cx, ? cy = f(t j ); i f = 200ma junction temperature t j (c) junction temperature t j (c) relative luminious flux vs junction temperature v / v (25c) = f(t j ); i f = 200ma relative luminious flux rel ? cx ? cy items ? to ? check: 1. ? rated ? current ? in ? each ? graph ? title 2. ? relative ? value=1 ? @ ? rated ? current 3. ? typ ? vf ? @ ? rated ? current 4. ? relative ? value=1 ? @ ? 25c ? degree 5. ? max ? value ? in ? each ? graph
05/01/2018 v1.0 7 spiceplus 2520 white : SPW-VZHG package outlines material material lead-frame package encapsulant soldering leads cu alloy with au plating heat resistant polymer silicone resin au plating note: product is pb free note : primary thermal path is through cathode lead of led package general tolerances 0.10 abcd SPW-VZHG dominant opto technologies innovating illumination tm
05/01/2018 v1.0 8 recommended solder pad recommended solder stencil design SPW-VZHG dominant opto technologies innovating illumination tm
05/01/2018 v1.0 9 taping and orientation ? reels come in quantity of 2000 units. ? reel diameter is 180 mm. SPW-VZHG dominant opto technologies innovating illumination tm
05/01/2018 v1.0 10 packaging specifcation 08/12/2016 v7.0 13 packaging specifcation ingan warm white: ddf-ljg dominant opto technologies innovating illumination tm SPW-VZHG dominant opto technologies innovating illumination tm preliminary draft this specifcation does not constitute a fnal offer
05/01/2018 v1.0 11 packaging specifcation average 1pc spiceplus 2520 1 completed bag (2000pcs) 0.034 190 10 weight (gram) cardboard box dimensions (mm) empty box weight (kg) super small small medium large for spiceplus 2520 reel / box cardboard box size weight (gram) 0.011 200 10 dominant tm moisture sensitivity level moisture absorbent material + moisture indicator the reel, moisture absorbent material and moisture indicator are sealed inside the moisture proof foil bag reel barcode label label (l) lot no : lotno (p) part no : partno (c) cust no : partno (g) grouping : group (q) quantity : quantity (d) d/c : date code (s) s/n : serial no dominant opto technologies ml temp 2 260?c rohs compliant made in malaysia 325 x 225 x 190 325 x 225 x 280 570 x 440 x 230 570 x 440 x 460 0.38 0.54 1.46 1.92 9 reels max 15 reels max 60 reels max 120 reels max SPW-VZHG dominant opto technologies innovating illumination tm preliminary draft this specifcation does not constitute a fnal offer
05/01/2018 v1.0 12 time (sec) 0 50 100 150 200 300 250 225 200 175 150 125 100 75 50 25 275 temperature (?c) classifcation refow profle (jedec j-std-020c) ramp-up 3?c/sec max. 255-260?c 10-30s 60-150s ramp- down 6?c/sec max. preheat 60-180s 480s max 217?c recommended pb-free soldering profle SPW-VZHG dominant opto technologies innovating illumination tm preliminary draft this specifcation does not constitute a fnal offer
05/01/2018 v1.0 13 appendix 1) brightness: 1.1 luminous intensity is measured with an internal reproducibility of 8 % and an expanded uncertainty of 11 % (according to gum with a coverage factor of k=3). 1.2 luminous fux is measured with an internal reproducibility of 8 % and an expanded uncertainty of 11 % (according to gum with a coverage factor of k=3). 1.3 radiant intensity is measured with an internal reproducibility of 8 % and an expanded uncertainty of 11 % (according to gum with a coverage factor of k=3). 1.4 radiant fux is measured with an internal reproducibility of 8 % and an expanded uncertainty of 1 1 % (according to gum with a coverage factor of k=3). 2) color: 2.1 chromaticity coordinate groups are measured with an internal reproducibility of 0.005 and an expanded uncertainty of 0.01 (accordingly to gum with a coverage factor of k=3). 2.2 dominant wavelength is measured with an internal reproducibility of 0.5nm and an expanded uncertainty of 1nm (accordingly to gum with a coverage factor of k=3). 3) voltage: 3.1 forward voltage, vf is measured with an internal reproducibility of 0.05v and an expanded uncertainty of 0.1v (accordingly to gum with a coverage factor of k=3). 4) corrosion robustness: 4.1 test conditions: 40 c / 90 % rh / 15 ppm h 2 s / 336 h. = stricter than iec 60068-2-43 (h 2 s) [25 c / 75% rh / 10 ppm h 2 s / 21 days]. SPW-VZHG dominant opto technologies innovating illumination tm preliminary draft this specifcation does not constitute a fnal offer
revision history note all the information contained in this document is considered to be reliable at the time of publishing. however, dominant opto technologiess does not assume any liability arising out of the application or use of any product described herein. dominant opto technologies reserves the right to make changes to any products in order to improve reliability, function or design. dominant opto technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the managing director of dominant opto technologies . subjects initial release date of modifcation 05 jan 2018 05/01/2018 v1.0 14 page - SPW-VZHG dominant opto technologies innovating illumination tm preliminary draft this specifcation does not constitute a fnal offer
about us dominant opto technologies is a dynamic company that is amongst the worlds leading automotive led manu - facturers. with an extensive industry experience and relentless pursuit of innovation, dominants state-of-art manufacturing and development capabilities have become a trusted and reliable brand across the globe. more in - formation about dominant opto technologies, a iso/ts 16949 and iso 14001 certifed company, can be found under http://www.dominant-semi.com. please contact us for more information: dominant opto technologies sdn. bhd. lot 6, batu berendam, ftz phase iii, 75350 melaka, malaysia tel: (606) 283 3566 fax: (606) 283 0566 e-mail: sales@dominant-semi.com SPW-VZHG dominant opto technologies innovating illumination tm preliminary draft this specifcation does not constitute a fnal offer


▲Up To Search▲   

 
Price & Availability of SPW-VZHG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X